Part Number Hot Search : 
L339N D74LVC1 BC857C IPD50 ULY7711 COM90 ULY7711 V1210
Product Description
Full Text Search
 

To Download TC5404 Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 TC54
Voltage Detector
Features
* Precise Detection Thresholds: Standard 2.0%, Custom 1.0% * Small Packages: 3-Pin SOT-23A, 3-Pin SOT-89, TO-92 and 5-Pin SOT-23A (7.7V only) * Low Current Drain: Typ. 1 A * Wide Detection Range: 1.1V to 6.0V and 7.7V * Wide Operating Voltage Range: 0.7V to 10V
General Description
The TC54 series are CMOS voltage detectors that are especially well suited for battery-powered applications because of their extremely low 1 A operating current and small surface-mount packaging. Each part is lasertrimmed to the desired threshold voltage, which can be specified from 1.4V to 7.7V for a 2% tolerance and from 1.5V to 6.0V for a 1% tolerance. The device includes a comparator, low-current highprecision reference, laser-trimmed divider, hysteresis circuit and output driver. The TC54 is available with either an open-drain or complementary output stage. During operation, the TC54's output (VOUT) remains in the logic-high state as long as VIN is greater than the specified threshold voltage (VDET -). When VIN falls below VDET -, the output is driven to a logic-low. VOUT remains low until VIN rises above VDET - by an amount VHYST, whereupon it resets to a logic-high. TC54VC only
Applications
* * * * * Battery Voltage Monitoring Microprocessor Reset System Brown-Out Protection Switching Circuit in Battery Backup Level Discriminator
Functional Block Diagram
2 VIN VOUT 1
Package Types
3-Pin SOT-23A VIN 3-Pin SOT-89 VIN
- +
3
TC54 TC54
1 2 VSS 2 3 VOUT VIN VSS 5-Pin SOT-23A NC NC 5 4 1
VREF
VSS 3
VOUT
3-Pin TO-92 123
TC54VN has open-drain output. TC54VC has complementary output.
TC54
1 VOUT VIN VSS Note: 2 3
VOUT VIN VSS
3-Pin SOT-23A is equivalent to the EIAJ SC-59 5-Pin SOT-23A is equivalent to the EIAJ SC-74A. (7.7V ONLY)
2004 Microchip Technology Inc.
DS21434G-page 1
TC54
1.0 ELECTRICAL CHARACTERISTICS
Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.
Absolute Maximum Ratings
Input Voltage ...................................................................+12V Output Current ..............................................................50 mA Output Voltage: CMOS................(VSS - 0.3V) to (VIN + 0.3V) Open-Drain.....................(VSS - 0.3V) to 12V Power Dissipation (TA 70C): 3-Pin SOT-23A .......................................................240 mW 3-Pin SOT-89..........................................................500 mW 5-Pin SOT-23A .......................................................240 mW 3-Pin TO-92 ............................................................300 mW Operating Temperature Range........................-40C to +85C Storage Temperature Range .........................-65C to +150C
PIN FUNCTION TABLE
Symbol VOUT VIN VSS NC NC Description Digital Output Analog Input Ground Terminal No Connect No Connect
DC CHARACTERISTICS
Electrical Specifications: Unless otherwise noted, TA = +25C. Parameter Operating Voltage Quiescent Current Sym VIN ISS Min 0.7 -- -- -- -- Threshold Voltage (Note 1) VDET - 1.37 2.06 2.65 2.84 2.94 4.12 4.21 7.54 Hysteresis Voltage VHYST 28 42 54 58 60 84 86 154 Output Current IOUT -- -- -- -- -- Tempco of (VDET-) Delay Time Note 1: TC (VDET -) tDLY -- -- Typ -- 0.8 0.9 1.0 1.1 1.4 2.1 2.7 2.9 3.0 4.2 4.3 7.7 70 105 135 145 150 210 215 385 7.7 10.1 11.5 13.0 -10.0 100 -- Max 10.0 2.7 3.0 3.2 3.6 1.43 2.14 2.75 2.96 3.06 4.28 4.39 7.86 112 168 216 232 240 336 344 616 -- -- -- -- -- -- 0.2 mA mV V Units V A Test Conditions (VDET -) = 0.8 to 6.0V VIN = 2.0V VIN = 3.0V VIN = 4.0V VIN = 5.0V TC54VX14 TC54VX21 TC54VX27 TC54VX29 TC54VX30 TC54VX42 TC54VX43 TC54VX77 (5-pin SOT-23A only) VDET = 1.4V (typ) VDET = 2.1V (typ) VDET = 2.7V (typ) VDET = 2.9V (typ) VDET = 3.0V (typ) VDET = 4.2V (typ) VDET = 4.3V (typ) VDET = 7.7V (typ) VOL = 0.5V, VIN = 2.1V VIN = 3.0V VIN = 4.0V VIN = 5.0V TC54VC Only: VOH = VIN - 2.1V, VIN = 8.0V ppm/C -40C TA 85C ms VDET - VOUT inversion
For other voltage options, please contact your regional Microchip sales office.
DS21434G-page 2
2004 Microchip Technology Inc.
TC54
VDET - VDD tDLY VOH
OUTPUT
FIGURE 1-1:
Timing Diagram.
2004 Microchip Technology Inc.
DS21434G-page 3
TC54
2.0 PIN DESCRIPTIONS
The descriptions of the pins are listed in Table 2-1.
TABLE 2-1:
PIN FUNCTION TABLE
Pin No. (3-Pin SOT-89) (3-Pin TO-92) 1 2 3 -- -- Pin No. (5-Pin SOT-23A) 1 2 3 4 5 Symbol VOUT VIN VSS NC NC Digital Output Analog Input Ground Terminal No Connect No Connect Description
Pin No. (3-Pin SOT-23A) 1 3 2 -- --
2.1
Digital Output (VOUT)
2.3
Ground Terminal (VSS)
VOUT goes low when VIN drops below VDET - and returns high when VIN rises above VDET - + VHYST. (See Figure 3-1).
VSS provides the negative reference for the analog input voltage. Typically, the circuit ground is used.
2.4 2.2 Analog Input (VIN)
VIN can be used for power supply monitoring or a voltage level that requires monitoring.
No Connect (NC)
No internal connection.
DS21434G-page 4
2004 Microchip Technology Inc.
TC54
3.0 DETAILED DESCRIPTION
In normal steady-state operation when VIN > VDET -, the output will be at a logic-high (see Figure 3-1). In the case of the TC54VN, this is an open-drain condition. If the input falls below VDET -, the output will pull down (Logic 0) to VSS. Generally, VOUT can pull down to within 0.5V of VSS at rated output current and input voltage. (See Section 1.0 "Electrical Characteristics"). The output (VOUT) will stay valid until the input voltage falls below the minimum operating voltage (VINMIN) of 0.7V. Below this minimum operating voltage the output is undefined. During power-up (or anytime VIN has fallen below VINMIN), VOUT will remain undefined until VIN rises above VINMIN. Once this occurs, the output will become valid. VOUT will be in its active-low state, while VINMIN < VIN < VDET+ (therefore, VDET + = VDET - + VHYST). If the input rises above VDET+, the output will assume its inactive state (high for TC54VC, open-drain for TC54VN).
VIN
VDET + VHYST Release Voltage or RESET Voltage
Detect Voltage VDET - Minimum Operating Voltage Ground Level
VOUT
Output Voltage
Ground Level
FIGURE 3-1:
Timing Diagram.
2004 Microchip Technology Inc.
DS21434G-page 5
TC54
4.0
4.1
APPLICATIONS INFORMATION
Modifying The Trip Point, VDET -
4.2
Other Applications
Although the TC54 has a pre-programmed VDET -, it is sometimes necessary to make adjustments during prototyping. This can be accomplished by connecting an external resistor divider to a TC54, which has a VDET - lower than that of VSOURCE (Figure 4-1). To maintain detector accuracy, the bleeder current through the divider should be significantly higher than the 1 A operating current required by the TC54. A reasonable value for this bleeder current is 100 A (100 times the 1 A required by the TC54). For example, if VDET - = 2V and the desired trip point is 2.5V, the value of R1 + R2 is 25 k (2.5V/100 A). The value of R1 + R2 can be rounded to the nearest standard value and plugged into the equation of Figure 4-1 to calculate values for R1 and R2. 1% tolerance resistors are recommended. VSOURCE
Low operating power and small physical size make the TC54 series ideal for many voltage detector applications, such as those shown in Figures 4-2, 4-3 and 4-4. Figure 4-2 shows a low-voltage gate drive protection circuit that prevents overheating of the logic-level MOSFET due to insufficient gate voltage. When the input signal is below the threshold of the TC54VN, its output grounds the gate of the MOSFET. Figure 4-3 and Figure 4-4 show the TC54 in conventional voltage monitoring applications.
4.3V 270 VIN VOUT VCC RL MTP3055EL
TC54VX
VSS
R2 VIN
TC54
VOUT
FIGURE 4-2: Protection.
MOSFET Low Drive
R1
VSS
+ VIN -
TC54VX
R 1V = ------------------- = V SOURCE DET R1 + R 2 Where: VSOURCE = Voltage to be monitored (VDET -) = Threshold Voltage setting of TC54 Note: In this example, VSOURCE must be greater than (VDET -) VOUT VSS
BATLOW
FIGURE 4-3:
Battery Voltage Monitor.
FIGURE 4-1: Modify trip-point of the TC54 using external resistor divider.
VIN + Pwr Sply - VSS VOUT Power Good
TC54VX
FIGURE 4-4:
Power Good Monitor.
DS21434G-page 6
2004 Microchip Technology Inc.
TC54
5.0
5.1
PACKAGING INFORMATION
Package Marking Information
3-Pin SOT-23A 3-Pin SOT-89 5-Pin SOT-23A
2 1 2 3 4 1
4
3
1
2
3
4
1
represents output configuration (CMOS or Nch) and first integer of voltage Ex: CMOS 3.x = Symbol B C D E F H I Symbol L M N P R S T
D
1
represents output configuration and first integer of voltage Symbol Output Nch Voltage 7.
Output CMOS CMOS CMOS CMOS CMOS CMOS CMOS Output Nch Nch Nch Nch Nch Nch Nch
Voltage 1. 2. 3. 4. 5. 6. 7. Voltage 1. 2. 3. 4. 5. 6. 7.
3 2
T
represents first decimal of output voltage Symbol 0 1 2 3 4 5 6 7 8 9 &
4
Voltage .0 .1 .2 .3 .4 .5 .6 .7 .8 .9
represents assembly lot code
2
represents first decimal of output voltage (0-9) Ex: CMOS 3.x = Symbol 0 1 2 3 4 5 &
D4
Voltage .0 .1 .2 .3 .4 .5
Symbol 6 7 8 9
Voltage .6 .7 .8 .9
3
4
represents assembly lot code
2004 Microchip Technology Inc.
DS21434G-page 7
TC54
Package Marking Information (Continued)
3-Pin TO-92
1234 5678
1 , 2 ,& 3 4
= 54X (fixed)
represents output configuration (CMOS or Nch) Ex: CMOS 3.x = C Symbol C N Output CMOS N-Channel
5
represents first integer of detect voltage Symbol 2 3 4 5 6 Voltage 2. 3. 4. 5. 6.
6
represents first decimal of detect voltage Symbol 0 1 2 3 4 Voltage .0 .1 .2 .3 .4 Symbol 5 6 7 8 9 Voltage .5 .6 .7 .8 .9
7
represents the output Delay Time Symbol 0 Delay Time No Delay
8
respresents the device accuracy Symbol 1 2 Accuracy 1.0% (custom) 2.0% (standard)
DS21434G-page 8
2004 Microchip Technology Inc.
TC54
3-Lead Plastic Small Outline Transistor (CB) (SOT23A)
E E1
2
B n p
p1
D
1
c A A2
L
A1
Number of Pins Pitch Outside lead pitch (basic) Overall Height Molded Package Thickness Standoff Overall Width Molded Package Width Overall Length Foot Length Foot Angle Lead Thickness Lead Width *Controlling Parameter
Units Dimension Limits n p p1 A A2 A1 E E1 D L c B
MIN
INCHES NOM 3 .037 .075 - - - - - - - - -
MAX
MIN
.067 .035 .035 .000 .098 .055 .106 .014 0 .004 .012
.083 .055 .051 .004 .118 .071 .122 .022 10 .014 .019
MILLIMETERS* NOM 3 0.95 1.70 1.90 0.90 - 0.90 - 0.00 - 2.50 - 1.40 - 2.70 - 0.35 - 0 - 0.10 - 0.30 -
MAX
2.10 1.40 1.30 0.10 3.00 1.80 3.10 0.55 10 0.35 0.50
Notes: Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" (0.127mm) per side. EIAJ Equivalent: SC-59 Drawing No. C04-130
2004 Microchip Technology Inc.
DS21434G-page 9
TC54
3-Lead Plastic Small Outline Transistor (MB) (SOT89)
H E B1
3 B D D1 2 R 1 B1 L E1 p p1
A
C
Pitch Outside lead pitch (basic) Overall Height Overall Width Molded Package Width at Base Molded Package Width at Top Overall Length Tab Length Tab Corner Radii Foot Length Lead Thickness Lead 2 Width Leads 1 & 3 Width
Units Dimension Limits p p1 A H E E1 D D1 R L c B B1
INCHES MIN MAX .059 BSC .118 BSC .055 .063 .155 .167 .090 .102 .084 .090 .173 .181 .064 .072 .010 .035 .047 .014 .017 .017 .022 .014 .019
MILLIMETERS* MIN MAX 1.50 BSC 3.00 BSC 1.40 1.60 3.94 4.25 2.29 2.60 2.13 2.29 4.40 4.60 1.62 1.83 0.254 0.89 1.20 0.35 0.44 0.43 0.56 0.36 0.48
*Controlling Parameter Notes: Dimensions D and E1 do not include mold or flash protrusions. Mold flash or protrusions shall not exceed .005" (0.127mm) per side. JEDEC Equivalent: TO-243
Drawing No. C04-29 Revised 07-24-03
DS21434G-page 10
2004 Microchip Technology Inc.
TC54
5-Lead Plastic Small Outline Transistor (CT) (SOT23)
E E1
p B p1 D
n
1
c A A2
L
A1
Number of Pins Pitch p1 Outside lead pitch (basic) Overall Height A .035 .057 0.90 Molded Package Thickness A2 .035 .051 0.90 Standoff A1 .000 .006 0.00 Overall Width E .102 .118 2.60 Molded Package Width E1 .059 .069 1.50 Overall Length D .110 .122 2.80 Foot Length L .014 .022 0.35 Foot Angle 0 10 0 c Lead Thickness .004 .008 0.09 Lead Width B .014 .020 0.35 Mold Draft Angle Top 0 10 0 Mold Draft Angle Bottom 0 10 0 *Controlling Parameter Notes: Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .005" (0.127mm) per side. EIAJ Equivalent: SC-74A
Drawing No. C04-091
Units Dimension Limits n p
MIN
INCHES* NOM 5 .038 .075 .046 .043 .003 .110 .064 .116 .018 5 .006 .017 5 5
MAX
MIN
MILLIMETERS NOM 5 0.95 1.90 1.18 1.10 0.08 2.80 1.63 2.95 0.45 5 0.15 0.43 5 5
MAX
1.45 1.30 0.15 3.00 1.75 3.10 0.55 10 0.20 0.50 10 10
2004 Microchip Technology Inc.
DS21434G-page 11
TC54
3-Lead Plastic Transistor Outline (ZB) (TO-92)
E1
D
1
n
L
1
2
3
B p c A
R
INCHES* NOM 3 .050 .130 .143 .175 .186 .170 .183 .085 .090 .500 .555 .014 .017 .016 .019 4 5 2 3 MILLIMETERS NOM 3 1.27 3.30 3.62 4.45 4.71 4.32 4.64 2.16 2.29 12.70 14.10 0.36 0.43 0.41 0.48 4 5 2 3
Number of Pins Pitch Bottom to Package Flat A .155 Overall Width E1 .195 Overall Length D .195 Molded Package Radius R .095 Tip to Seating Plane L .610 c Lead Thickness .020 Lead Width B .022 6 Mold Draft Angle Top Mold Draft Angle Bottom 4 *Controlling Parameter Notes: Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" (0.254mm) per side. JEDEC Equivalent: TO-92 Drawing No. C04-101
Units Dimension Limits n p
MIN
MAX
MIN
MAX
3.94 4.95 4.95 2.41 15.49 0.51 0.56 6 4
DS21434G-page 12
2004 Microchip Technology Inc.
TC54
PRODUCT IDENTIFICATION SYSTEM
To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office. PART NO. Device X XX X X X XX XX Examples: a) TC54VC1402ECB713: 1.4V Voltage Detector, 2% Tol., SOT-23A-3-TR. TC54VC1402EMB713: 1.4V Voltage Detector, 2% Tol., SOT-89-3-TR. TC54VC1402EZB: 1.4V Voltage Detector, 2% Tol., TO-92. TC54VC2102ECB713: 2.1V Voltage Detector, 2% Tol., SOT-23A-3-TR. TC54VC2102EMB713: 2.1V Voltage Detector, 2% Tol., SOT-89-3-TR. TC54VC2102EZB: 2.1V Voltage Detector, 2% Tol., TO-92. TC54VC2702ECB713: 2.7V Voltage Detector, 2% Tol., SOT-23A-3-TR. TC54VC3002ECB713: 3.0V Voltage Detector, 2% Tol., SOT-23A-3-TR. TC54VN4202ECB713: 4.2V Voltage Detector, 2% Tol., SOT-23A-3-TR. TC54VN7702ECT713: 7.7V Voltage Detector, 2% Tol., SOT-23A-3-TR.
Output Detected Extra Tolerance Temp. Pkg Taping Config. Voltage Feature Direction Code
TC54V: Voltage Detector
b)
Device:
Output Configuration:
N C
= Nch Open-Drain = CMOS Output
c)
Detected Voltage:
14 21 27 29 30 42 43
= = = = = = =
1.4V 2.1V 2.7V 2.9V 3.0V 4.2V 4.3V
d)
e)
Extra Feature Code:
0
= Fixed
f)
Tolerance: 1 2 = 1% (custom) = 2% (standard)
g)
Temperature: E = -40C to +85C
Package:
CB = 3-Pin SOT-23A (equivalent to EIAJ SC-59) MB = 3-Pin SOT-89 CT = 5-Pin SOT-23A (equivalent to EIAJ SC-74A) (7.7V ONLY) ZB = Transistor Outline (TO-92), 3-lead
h)
i)
Taping Direction: 713 = Standard Taping
j)
Sales and Support
Data Sheets Products supported by a preliminary Data Sheet may have an errata sheet describing minor operational differences and recommended workarounds. To determine if an errata sheet exists for a particular device, please contact one of the following: 1. 2. 3. Your local Microchip sales office The Microchip Corporate Literature Center U.S. FAX: (480) 792-7277 The Microchip Worldwide Site (www.microchip.com)
Please specify which device, revision of silicon and Data Sheet (include Literature #) you are using. Customer Notification System Register on our web site (www.microchip.com/cn) to receive the most current information on our products.
2004 Microchip Technology Inc.
DS21434G-page 13
TC54
NOTES:
DS21434G-page 14
2004 Microchip Technology Inc.
Note the following details of the code protection feature on Microchip devices: * * Microchip products meet the specification contained in their particular Microchip Data Sheet. Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions. There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property. Microchip is willing to work with the customer who is concerned about the integrity of their code. Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."
*
* *
Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.
Information contained in this publication regarding device applications and the like is intended through suggestion only and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. No representation or warranty is given and no liability is assumed by Microchip Technology Incorporated with respect to the accuracy or use of such information, or infringement of patents or other intellectual property rights arising from such use or otherwise. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any intellectual property rights.
Trademarks The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. AmpLab, FilterLab, MXDEV, MXLAB, PICMASTER, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A. Analog-for-the-Digital Age, Application Maestro, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, Migratable Memory, MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries. SQTP is a service mark of Microchip Technology Incorporated in the U.S.A. All other trademarks mentioned herein are property of their respective companies. (c) 2004, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved. Printed on recycled paper.
Microchip received ISO/TS-16949:2002 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona and Mountain View, California in October 2003. The Company's quality system processes and procedures are for its PICmicro(R) 8-bit MCUs, KEELOQ(R) code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
2004 Microchip Technology Inc.
DS21434G-page 15
WORLDWIDE SALES AND SERVICE
AMERICAS
Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: 480-792-7627 Web Address: www.microchip.com Atlanta Alpharetta, GA Tel: 770-640-0034 Fax: 770-640-0307 Boston Westford, MA Tel: 978-692-3848 Fax: 978-692-3821 Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075 Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924 Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260 Kokomo Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387 Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608 San Jose Mountain View, CA Tel: 650-215-1444 Fax: 650-961-0286 Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509
ASIA/PACIFIC
Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755 China - Beijing Tel: 86-10-8528-2100 Fax: 86-10-8528-2104 China - Chengdu Tel: 86-28-8676-6200 Fax: 86-28-8676-6599 China - Fuzhou Tel: 86-591-750-3506 Fax: 86-591-750-3521 China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431 China - Shanghai Tel: 86-21-6275-5700 Fax: 86-21-6275-5060 China - Shenzhen Tel: 86-755-8290-1380 Fax: 86-755-8295-1393 China - Shunde Tel: 86-757-2839-5507 Fax: 86-757-2839-5571 China - Qingdao Tel: 86-532-502-7355 Fax: 86-532-502-7205
ASIA/PACIFIC
India - Bangalore Tel: 91-80-2229-0061 Fax: 91-80-2229-0062 India - New Delhi Tel: 91-11-5160-8632 Fax: 91-11-5160-8632 Japan - Kanagawa Tel: 81-45-471- 6166 Fax: 81-45-471-6122 Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934 Singapore Tel: 65-6334-8870 Fax: 65-6334-8850 Taiwan - Kaohsiung Tel: 886-7-536-4816 Fax: 886-7-536-4817 Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102 Taiwan - Hsinchu Tel: 886-3-572-9526 Fax: 886-3-572-6459
EUROPE
Austria - Weis Tel: 43-7242-2244-399 Fax: 43-7242-2244-393 Denmark - Ballerup Tel: 45-4420-9895 Fax: 45-4420-9910 France - Massy Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79 Germany - Ismaning Tel: 49-89-627-144-0 Fax: 49-89-627-144-44 Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781 Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340 England - Berkshire Tel: 44-118-921-5869 Fax: 44-118-921-5820
08/24/04
DS21434G-page 16
2004 Microchip Technology Inc.


▲Up To Search▲   

 
Price & Availability of TC5404

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X